REPORT DOCUMENTATION PAGE " e

(Cn ot aTorraten g @

T EoinCY USE OHLY {leave blenk) | 2. REPORT DATE 3. REFCAT TVPE AR Y DATES LOVITED
FINAL/23 SEP 91 TO 22 AUG 94
£ T FUnING hULIDITE

. - . PR
LE oD SUETH

WAVELETS IN SIGNAL DETECTION AND IDENTIFICATION
COMPARATIVE SIGNAL PROCESSING TECHNOLOGY EVALUATION (wm

7033 /DARPA
F49620-91-C-0097

Professor Raghu Raghaven

m meme e e ST T T T s s LT e e e

Lockhead R&DD, D-9640/B-254
Lockheed Missiles & Space Co Inc

3251 Hanover Street
Palo Alto, CA 94303

D AN IONING, WOt Cmiind AGERCY NARES] ARD A
AFOSR/NM

110 DUNCAN AVE, SUITE B115

BOLLING AFB DC 20332-0001

F49620-91-C-0097

S FiimarmarreTADY MATEG

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION IS UNLIMITED UL

The Wavelet in Signal Detection and Identification: Comparative Signal Processing
Technology Evaluation Program has been conducted by Lockheed Missiles & Space
Company to develop wavelet based signal detection and classification techniques and
compare them to Fourier time-frequency methods. The problem domain is submarine
detection and identification using transient passive sonar signals. These
nontraditional signals are critical in solwving current Anti-Submarine Warfare (ASW)
problems which include ultra quiet nuclear submarinss and third world diesel
submarines operating on batteries in shallow water. The Wavelets program supports
the ARPA sponsored Multisensor Fusion System Program (MSF) at Lockheed (ARPA
contract N00014-91-C-0237).

s

UNCLASSIFIED UNCLASSIFIED SAR(SAME AS REPORT)

UNCLASSIFIED




LMSC-P412291
TABLE OF CONTENTS
Section 1: EXECUTIVE SUMMARY .......ouoeceeeceeeesesesesesesesesessssssssesesesssens 1
Section 2: DATABASES.......ittircentneresintssesseeesesesssessssssssssesssesessssessnsssesenes 4
Section 2.1: Synthetic Chirps, Tonals, Damped Sinusoids.........c.cceveereererrnrcercenerneceeceenvennnnns 4
Section 2.2: Homebrew Transient TESt Set.........coorevevrnineerreireenrerneecressesessessesnesssnonss 9
Section 2.3: Navy BiologiCs Data S€l........cuvirvcerirerccinverererennnesresssessenssesssssssesessessessssssens 13
Section 2.4: NUWC Classified Transient Databases........ccoevueveeerereeeerrererernesnenenesessennene 14
Section 2.5: Synthetic Generic Transient Databases ..........cccoccuerverecreivrrerereneeseeresersesesennns 15
Section 3: TRANSFORMS ...ttt ssasssssts s ssesssssesss s s sessssenen 19
Section 3.1: Continuous Wavelet Transform (Scalogram) ...........c.ceeeevvvvevereirvrrversersrenneenes 19
Section 3.2: Discrete Wavelet TranSfOIm .....coeeveeiievienereenvereeiesieiseeseeesseessesseesesssessessseens 19
Section 3.3: M-Band Discrete Wavelet Transform...........cocveevreeeeeeereeneereneveeenseeeseeseeseens 20
Section 3.4: Short-Time Fourier Transform (Spectrogram) ............ccoceevevvereereeerneseeecnenenen 20
Section 3.5: Gabor TranSfOIrM.....cciuiiniiiniceecinieriresrne e ssess s esessssasssenenns 21
Section 3.6: Pseudo-Wigner-Ville DiStriDULION .........ooveueieeeeeeeenieeeeeeeeceseeceeeeeeeeeeesnanns 21
Section 3.7: Choi and Williams DiStriDUION .......cueveeeeeeeeiieeeeeccieresceeeeteseeesseenessseeeeenaes 21
Section 4: DETECTION........c.coviierrreeece e sesssssensssssesssesesessssssaen 21
Section 4.1: Generalized Likelihood Ratio (GLR) DEECIOT ......coeeeeeerereeeeeereeeeeesseenrenas 22
Section 4.2: Wolcin Detector FTAmMEWOTK .......coueueeveeeveiierieeeeeetreneeeesnessseeseeeseeensesssseens 23
Section 4.3: STFT Based Generalized Likelihood Ratio Detector.........oveevevveveeeeeneeeereennans 24
Section 4.4: Wavelet Based Generalized Likelihood Ratio Detector........covvueeeevereereeeennne 25
Section 5: FEATURE EXTRACTION.......cooeceeceeeeteeeeveeseesessenens s ssseens 27
Section 5.1: Shift Invariant Band Moment Features............coucveeeeeeeeererecenneeeesensseensessna 28
Section 5.2: Adaptive Energy Window Features.........coveuvueeeeeeeeeceseeeeeereeeeeereesesesesssssssnns 28
Section 6: CLASSIFICATION ...ttt eeesseseeeesessessssssssssssssesassnaas 29




LMSC-P412291

Section 7.1: Detection Comparative TestS.......cccvervrninininineriecsnnnnnninenensssssnesncssseennne 31
Section 7.2: Identification Comparative TestS........ccueriruerenrereernrentnernerernnensssssnsissssanseesnes 31
Section 7.2.1: Analysis of Homebrew Transient Test S€t........ccervverereeeeneieresesnessnsrarnennene 36
Section 7.2.2: Analysis of Navy Biologics Data Set .........cocouverevnnrrnennnnieninnnesecnennennens 38
Section 7.2.3: Analysis of NUWC Classified Transient Databases..........ccccoveeveuveinneennnnncns 39
Section 7.2.4: Analysis of Synthetic Generic Transient Databases...........ccccevvevvererenennnne. 40
Section 7.2.4.1: "Between-Class" Identification Comparative Tests ..........ccoeeerurvereruennenns 40
Section 7.2.4.2: "Within-Class" Identification Comparative Tests ........coeecurrerreceerunsunnnes 41
Section 8: TECHNOLOGY TRANSFER ...ttt snneseaens 46

Section 8.1: Transfer of Detection and Classification Algorithms to the Multisensor

FUSION SYSIEM......coviiintieirisieriiiiinitistinesinnsscssesassnssnssesssssesssssssssnanes 46

Section 8.2: Transfer of Wavelets Quicklook Tool to the Multisensor Fusion System ......46
Section 9: RELATED ACTIVITIES. ...t 46
Section 9.1: Parallel Implementation of Continuous Wavelet Transform.............cccccuune..ee. 46
Section 9.2: Classification of Active Sonar Signals ........cccceervereerennerncrennvnensrescssenseesseeneas 49
Section 10: REFERENCES ...........oo o cieniirntentsisnsssesasseesisssnesesanssessessessennes 49

Accesion For -l

NTIS CRA&I 3

DTIC TAB ;

Unannounced O !

Justification i

By

Distribution/

Availability Codes

Avail and/or

Dist Special

-




LMSC-P412291

1. EXECUTIVE SUMMARY

The Wavelets in Signal Detection and Identification: Comparative Signal Processing Technology
Evaluation Program has been conducted by Lockheed Missiles & Space Company to develop
wavelet based signal detection and classification techniques and compare them to Fourier time-
frequency methods. The problem domain is submarine detection and identification using transient
passive sonar signals. These nontraditional signals are critical in solving current Anti-Submarine
Warfare (ASW) problems which include ultra quiet nuclear submarines and third world diesel
submarines operating on batteries in shallow water. The Wavelets program supports the ARPA
sponsored Multisensor Fusion System Program (MSF) at Lockheed (ARPA contract N00014-91-
C-0237).

The Wavelets program has the goal of performing comparative tests of wavelets and classical
transform based techniques for signal detection and identification. The primary problem domain
is processing underwater acoustic transients with the purpose of detecting and identifying
submarines. Our overall approach to this problem is given in Figure 1.

A critical element in the program is the availability of well documented databases which are
necessary for testing and validation. The data we have analyzed includes a large variety of
synthetic, laboratory generated, biological and Navy transient databases. At the early stage of the
program, we have implemented tools for generating chirps, tonals, gaussian weighted sinusoids,
and sums of exponentially damped sinusoids. These synthetic signals were used for validating the
performance of the various transforms. We have also generated an extensive set of acoustic
transient signals in an office environment using a microphone designed for voice recording in
conjunction with the acoustic digitizer. This in-house data set facilitated the validation of the end-
to-end identification process. An introductory Navy biologics data set was acquired at the end of
1992, which included typical ocean noise such as whale cries, whale clicks, two type of porpoise
cries, and shrimp clicks. This data set was used in our identification comparative tests. We have
also processed a NUWC classified transient database consisting of a wide variety of signals
obtained from diverse sensors in different environments. Finally, four classes of generic transients,
namely impulsive, ringing, chirp, and noise-like transients, as described in the Navy Journal of
Underwater Acoustics were generated and used extensively in our detection as well as
identification comparative tests. More details on the databases are given in Section 2.

The transforms used in this study consists of two basic types: the Wavelet and the Fourier
transforms. Within the Wavelet family, we have implemented the Daubechies Discrete Wavelet
Transform (DWT), the Gauss-Morlet Continuous Wavelet Transform (CWT), and the M-Band
Discrete Wavelet Transform. For the Fourier family, we have implemented the Short-Time
Fourier Transform (STFT), the Gabor Transform, the Wigner-Ville Distribution (WVD), and the
Choi-Williams Distribution (CWD). These transforms are described in Section 3.

Transient signals can be detected either in the time domain or in a transform domain. Under
wideband ambient noise conditions, detection of a transient in the time domain may be inefficient
especially if the transient signal has significant components on discrete elements of the transform
space, i.e. frequency, signal shape. Therefore, we have concentrated our approaches to detection
using STFT and DWT. The detectors were derived based on generalized likelihood ratio (GLR)
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testing statistics for testing the null hypothesis where the received signal is noise only versus the
alternative hypothesis where the received signal is noise plus real signal. A version of the
WolcinWolcin sequential detector was used which produces a statistic consisting of the maximum
likelihood signal power estimates in frequency and time. The derivations of both the STFT based
generalized likelihood ratio detector and the DWT based generalized likelihood ratio detector are
given in Section 4. Both detectors have been implemented and used extensively in the detection
comparative tests.

The most critical item in signal identification is the extraction of features which describe the signal
characteristics. These features must be robust, shift invariant and of low dimensionality. The
Wavelet transform as opposed to the Fourier transform is extremely sensitive to shifts in the
position of the signal relative to the processing window. This means that a one-sample time
difference in signal detection results in completely different Wavelet transform coefficients.
Considerable efforts were focused on developing shift invariant Wavelet features. Wavelet
features were developed using moments and energy windows in the time-scale plane and
parametric fits to the transform waveform. Time-frequency features were derived for the STFT and
WVD using adaptive energy windows in the time-frequency plane and parametric fits to the
transform waveform. Section 5 contains the details.

As for classification, the Classification And Regression Trees (CART) algorithm was our baseline
classifier. It is a binary tree classifier which uses linear combinations of features and ranks the
features in terms of discrimination power. Also employed in this study was a nonparametric
classifier known as Probabilistic Neural Network (PNN). This classifier estimates the class density
functions by Parzen windows. Both classifiers are discussed in Section 6 and were used in the
comparative tests for transient signal identification.

Extensive comparative tests of Wavelet with Fourier transform based techniques for signal detec-
tion and identification have been completed using synthetic, laboratory generated, biological and
Navy transient databases. The results we have obtained for detecting the arrival time of the tran-
sients indicated that the DWT detector does better than the STFT detector when the transients are
wideband. When the signal is narrowband, however, STFT detector performs better than DWT.
As for detecting the generic transients, the STFT detector consistently performs much better than
the DWT detector for all four generic types. For ringing (Type II) and chirp transients (Type III)
in particular, the STFT detector is nearly perfect in detecting the arrival time of the transient with
its probability of detection (PD) extremely close to 1 and its probability of false alarum (PFA)
extremely close to 0.

As for identification comparative tests, the analysis we have performed on Navy biologics data set
indicated that if we use CWT with adaptive scaling on peak energy, CWT techniques outperform
all of the STFT techniques. The NUWC classified transient databases contain classes that are made
up of signals from different environments and a range of signal-to-noise ratios (SNR). Since the
SNR is generally high and the between-class differences are large enough that these signals do not
provide a rigorous comparison of the techniques. Both the CWT and STFT performed comparably
in this case. We have conducted extensive identification comparative tests of the Wave Packet
(WP) approach against the CWT based classifier and the STFT based classifier on the synthetic
generic transient data sets. The between-class identification results indicated that when the SNR
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is positive, all three approaches perform extremely well with the WP performing consistently
better than the CWT and STFT. When the SNR is negative, the STFT outperforms the other two.
In cases where the SNR is worse than -14 dB, all three approaches showed an error of more than
50%. The "within-class" identification results showed that the STFT outperforms the other two
approaches in classifying the subclasses within the impulsive transient class. When the SNR is
negative, all three approaches showed a "within-class” classification error of more than 50%. For
identifying the subclasses within the ringing and chirp transient class, the CWT in general
outperforms the STFT and WP based classification schemes. Again, when the SNR is worse than
around -10 dB, all three approaches showed a "within-class” classification error of more than 50%.
Section 7 contains, for each comparative test, a detailed description of the experiment, the results,
and the findings. -

The various detection and identification techniques developed under this Contract have been
transferred to the MSF Program and are currently being validated as part of the MSF testbed. Also
transferred is the Wavelets Quicklook Tool which permits random access of data in huge
databases, extraction of signals of interest and classifying them based on both sound and transform
characteristics. Screening and processing of MSF Sea Test data would not have been possible
without our Wavelet Quicklook Tool. Several key features of this tool is given in Section 8.

A number of related activities performed under Lockheed Independent Research projects are
reported in Section 9. Of particular interest is the parallel implementation of the continuous
wavelet transform and its timing benchmarks.

The Wavelets program is a three year effort. This report summarizes the technical findings and
accomplishments made during the Contract period: September 23, 1991 to September 22, 1994.
2. DATABASES

2.1. Synthetic Chirps, Tonals, Damped Sinusoids

Tools for generating chirps, tonals, gaussian weighted sinusoids, sums of exponentially damped
sinusoids and synthetic biological sounds were implemented. These synthetic signals were used
for validating the performance of the various transforms.

The equation for a chirp is given by:

a12 iﬁrz .
—T«r +l(.oot

chirp (a, B, coo) = Ae

where a is the damping factor
B is the oscillating factor and
wy is the center frequency
A is the amplitude

Figures 2 to 5 show several chirp signals and their corresponding Short-Time Fourier Transforms.
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Figure 2. chirp(0,0,20) and its STFT
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Figure 5. Sum of chirp(0.2,5,50) and chirp(0.2,5,-50), its STFT, and its WVD
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The equation for the double sided damped cosine is

dampedcosine (o, ©y) = Acos (01 e

where « is the damping factor
wy is the center frequency
A is the amplitude

Figure 6 shows a damped cosine signal, the damped cosine signal embedded in Gaussian noise,
and the Gauss-Morlet Continuous Wavelet Transform of the damped cosine signal in Gaussian
noise.

The technique for generating synthetic porpoise signals can be applied to a wide class of chirp like
signals. The synthesis process involves three steps. The first step creates a frequency function f{z).
The frequency function employed is an exponentially damped sinusoid.

F(1) = (Asin((2nCr) +B) D)

where A is the amplitude
B is the base frequency
C is the cycle
D is the decay rate

The second step uses this frequency function to modulate a sinusoid.
s(t) = sin(2ntf (1))

The third step applies a volume envelope to the resulting function. The envelop function employed
is the gamma function

t(a- I)e(~t/b)

gr) = ———
% (@-N")

The equation for a porpoise signal is
porpoise(t) = s(t)g(1)

These synthetic porpoise signals are typical of ones in the NUWC database. Figure 7 shows the
Short-Time Fourier Transform of a porpoise signal consisting of three components with different
base frequencies B (880, 1496 and 2094 Hz) and amplitudes A (1000, 750, 562). The other
parameters were cycles C = 2, decay rate D =4, gamma parameters ¢ =0.2 and b= 1. The signal
duration was 0.6 seconds.

2.2. Homebrew Transient Test Set

A variety of transient acoustic signals were generated in an office environment. A microphone
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Figure 7. The STFT of a synthetic porpoise signal with three components. The

S

vertical axis is time and horizontal is frequency.

designed for voice recording was used in conjunction with the acoustic digitizer in a SUN IPC
workstation. The microphone used has a frequency response between 100 and 10,000 Hz.
Although not ideal for capturing all of the information in a wideband transient signal, this
microphone has better performance than is possible underwater where the media strongly
attenuates frequencies over 1,000 Hz. The SUN 8-bit digitizer quantizes at 8000 samples per
second. This is not as good as typical underwater systems which operate at 12 bits and 25,000
samples per second. 36 samples were generated for each of the 6 classes listed in Table 1 below.

Class Description

Table Fist pounded on computer table

Brick Lead brick dropped on computer table

Squeak Squeak produced by lock mechanism on file cabinet
(Note this is almost a pure tone)

Drawer Slammed drawer on desk

Door Slammed door to office
(Note this signal has two parts)

Clank Two iron barbells slammed together

Table 1. Signal classes for in-house database

11
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Figure 8 shows the time-amplitude plot of one example from each class. Considerable within class
variation means that the examples shown are not necessarily "typical.".

<
3
3
a
3
o
|
3

Figure 8. Time-amplitude history of one signal from each class.
Top row: table, clank. Middle row: door, drawer. Bottom row: squeak, brick.

12
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Figure 9 shows the Fourier transform of one example from each class.

Figure 9. Fourier transform of one signal from each class.
Top row left to right: drawer, brick, squeak. Bottom row left to right: clank, door, table.

2.3. Navy Biologics Data Set

An introductory Navy biologics data set was acquired (originally from Woods Hole). This set
consists of four classes of marine mammals. These signals were processed to segment out a subset
of representative signals for classification tests. The signals obtained are listed in Table 2.

Source Quantity
Sperm Whale Cries 195
Other Whale Cries 50
Porpoise 56
Dolphins 93
Shrimp Clicks Numerous

Table 2. Biological Signals Extracted from Navy Data Tapes

Figure 10 shows the time-amplitude plot of one example from two classes: other whale cries and
porpoise.

13
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Figure 10. Time-amplitude history of two biological signals.

2.4. NUWC Classified Transient Databases

This NUWC Classified Transient Database consists of a wide variety of signals obtained from
diverse sensors in different environments. It is a compilation of signals obtained from various
recent Navy exercises. Conditions vary significantly. A variety of acoustic sensors are represented
whose characteristics are extremely varied. These variations make it difficult to perform
comparative testing using this database since the sensor characteristics often overshadow the
signals. However, certain classes of significant signals were extracted with consistent sensor
characteristics.

These classes included some cooperative exercises in which a wrench was repeatedly dropped.
Other cooperative exercises included repeated dives to produce a database of hull pops associated
with pressure effects. Individual pulses from a bilge pump were also extracted although one would
generally classify pumps based on the pump frequency rather than the properties of each individual
pulse. Several mast and periscope related transient events were extracted but not in sufficient
numbers to train a classifier.

The variations in the database made it difficult to use much of it; however, the signal detection
algorithm was validated using this data since some of the variations represent real world variations.
However, a real system would only have a single sensor.

14
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2.5. Synthetic Generic Transient Databases

Our original concept for exploiting transients for ASW was to detect and identify submarine
unique transients. However, Navy documents and our analysis of the MSF’s Sea Test Data have
indicated the probability of occurrence of submarine unique transients is too low to be relied upon
for MSF missions. Our data analysis has revealed that there are a very large number of transients
produced by man-made vessels. These transients cannot be uniquely identified according to their
source. However, they do fall into four general classes referred to as generic transients. The
detection of an increase in generic transients is a strong indication that some object is passing near
the sensors. In order to investigate the theory, we have created a synthetic database of generic
transients based upon Navy documents in Navy Journal of Underwater Acoustics [1] and our own
analysis.

Four classes of generic transient types were defined which include most of the observed
underwater transients. They are Type I (impulse), Type II (ringing), Type III (chirp) and Type IV
(noise-like) transients. Functionally the Type I and Type II are similar except that the decay is
extremely rapid for Type I and there are harmonics in Type II. We have found that objects of
interest produce a large number of Type I and II transients that cannot be identified by their
source. Type IV is essentially band limited Gaussian noise often associated with air discharges.
- These synthetic transients were generated based on observations of real acoustic data according to
the parameters in Table 3.

Center Detection

Signal Class Frequency Duration Harmeonics Bandwidth Threshold
I) Impulse 2000-3000 Hz 5-10 ms 0 narrow 0.25
IT) Ringing 600-1000 Hz | 100-200 ms 2 Narrow 0.25
1) Chirp 330-400 Hz 80-120 ms 2 narrow 0.25
IV) Noise-like | 2000-3000 Hz | 200-500 ms 0 1400-1800 Hz 0.5

Table 3. Generic Transient Signal Classes and Parameters

15
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Figure 11 shows a representative signal for each generic transient type.
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Figure 11. Generic Transient Signals

An extended generic transient data set has also been generated to permit within-class tests. For
each of the four classes of generic transients, subclasses were generated using a model which best
fits the shape of the given transient type. Subclasses are generated by varying the parameters of
the model.

(I) The model used for the impulsive transients (Type I) was
y(#) = sin(2mF ) I'(a, B)

16
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The parameters used to generate the impulsive transient subclasses are given in Table 4.

Center
Type I Signal Frequency
Subclass Fc Duration o B
A 2500 Hz 5-6 and 8-10 ms 25 25
B 2000-2400 and 7 ms 25 25
2600-3000 Hz
C 2500 Hz 7 ms 1-2 and 34 25
D 2500 Hz 7 ms 25 0.5-2 and 34

Table 4. Impulsive Transient Signal Subclasses and Parameters

(II) The model used for the ringing transients (Type II) was
y() = s()T' (. B)
where 5(8) = 5,(8) +3, (1) +355 ()
51 (2) = sin(2mF )
S5 (t) = 0.5sin (2nt(F +F.))
s3 (1) = 0.25sin (2nt(F +F_+F))

The parameters used to generate the ringing transient subclasses are given in Table 5.

Center
Type II Signal Frequency
Subclass Fc Duration (o4 B
A 800 Hz 100-125 and 2.5 2.5
175-200 ms
B 600-700 and 150 ms 25 25
900-1000 Hz
C 800 Hz 150 ms 1-2 and 3-4 25
D 800 Hz 150 ms 2.5 0.5-2 and 34

Table 5. Ringing Transient Signal Subclasses and Parameters

(1) The model used for the chirp transients (Type III) was
y(6) = s()h()

where: s(1) = 5,(1) +5,(2) +55(¢)
si(1) = sin (2ntF (1))
5o (8) = (sin (2nt(F (1) +F (1))))/ (mag)

17
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The parameters used to generate the chirp transient subclasses are given in Table 6.

Center
Type I Signal Frequency
Subclass Fe Duration slide mag
A 365 Hz 80-90 and 0.25 2
110-120 ms
B 365 Hz 100 ms .1-2 and .3-.5 2
C 330-360 and 100 ms 0.25 2
370-400 Hz
D 365 Hz 100 ms 0.25 1.5-1.75 and
2.25-2.5

Table 6. Chirp Transient Signal Subclasses and Parameters

(IV) The model used for the noise-like transients (Type IV) was
y(@) = s()I'(a 1)

where

s(t) = bandpass filtered noise (FIR type filter)

The parameters used to generate the noise-like transient subclasses are given in Table 7.

Center
Type IV Signal Frequency
Subclass Fc Duration a bandwidth
A 2500 Hz 200-300 and 3 1600 Hz
400-500 ms
B 2000-2400 and 350 ms 3 1600 Hz
2600-3000 Hz

C 2500 Hz 350 ms 3 1400-1500 and
1700-1800 Hz

D 2500 Hz 350 ms 1.5-2.5 and 1600 Hz

3.54.0

Table 7. Noise-Like Transient Signal Subclasses and Parameters

18
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3. TRANSFORMS

Two major types of transform were used in this study: the Wavelet and the Fourier transforms.
Within the Wavelet family, we have implemented the Daubechies Discrete Wavelet Transform
(DWT), the Gauss-Morlet Continuous Wavelet Transform (CWT), and the M-Band Wavelet
Transform. For the Fourier family, we have implemented the Short-Time Fourier Transform
(STFT), the Gabor Transform, the Wigner-Ville Distribution (WVD), and the Choi-Williams
Distribution (CWD). These transforms are described below.

3.1. Continuous Wavelet Transform (Scalogram)

The Continuous Wavelet Transform [2, 3] can be expressed as an inner product of the form
CWT(1,a) = Jx (W) h, t* (z) dt

which measures the “similarity” between the signal and the basis functions.

1 T—1!
M)

A -
a.t(9 T

called wavelets. The wavelets are scaled and translated versions of the basic wavelet prototype
h(t).

A typical continuous wavelet is the Morlet wavelet which is a complex sinusoid windowed with a
Gaussian envelope. The range for the scale ais {1.0, 2.0, 3.1, 3.2, 3.3, 3.4, 5.0, 6.0} with empha-
sis placed in the region around 3.1 to 3.4.

3.2. Discrete Wavelet Transform

A special case of the general family of wavelet transforms is when a = a;” where ay =2 and n is
an integer.

DWT (4, n) = fjx(r)h( ag) .

In the discrete case, we can describe the Discrete Wavelet Transform as follows. The (single-
stage) DWT operates on a sequence s to yield two sequences
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N-1

s,(k) = Z h(n)s(k + n)
n=0
N-1

w (k) = Z g(n)sQk +n)
n=0

where £ is a wavelet-parameter sequence that satisfies conditions described by Daubechies and the
sequence g is defined by g(k) = (-1) kﬁ(N — 1-k) Inparticular, # and g form a pair of lowpass
and highpass conjugate quadrature filter and the two corresponding sequences s; and w; constitute

level-1 lowpass and highpass subbands. The L-level multistage DWT is obtained by recursive
single-stage DWT of the lowpass subbands s, ; to yield sequences s;,w,,...w;.

Examples of wavelet-parameter sequences include:

2 2,
)

Haar: D2={7,—

Daubechies-4: D4 =

1+3 3+.33-3 1-/3
t 4 4 7 4 4 }
The DWT is invertible since the special conditions on wavelet-parameters imply

s(k) = Zh(k— 2n)s;(n) +
n

Y 8k = 2n)w (n)
n

Therefore, the DWT preserves all information in the original sequence. Furthermore, each entry
of the DWT is a linear functional of the original sequence that is localized in both position (since
h has finite length) and in scale (a consequence of the relationship between the DWT and wavelet
bases). If the sequence s represents a sampled signal of continuous time, then the subbands
represent samples of a near octave-frequency subband decomposition of s.

3.3. M-Band Discrete Wavelet Transform

The M-Band Discrete Wavelet Transform [4] in general refers to the special case where a = ag”
with ay =M and n is an integer. Decomposition into M subbands is applied recursively to the low
frequency.

3.4. Short-Time Fourier Transform (Spectrogram)

The standard Fourier analysis allows the decomposition of a signal into individual frequency
components and establish the relative intensity of each component. The energy spectrum does
not, however, explicitly show the time localization of the frequency components. But such a time
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localization can be obtained by suitably pre-windowing the signal x(z) as is done in the Short-
Time Fourier Transform {5].

STFT (1, ®) = J.x(“c)g('c—t)e dr

where g(¢) is a window function.
3.5. Gabor Transform

Gabor Transform is a special case of STFT where the window is a Gaussian window. Gaussian
windows are often used since they meet the bound with equality for the Heisenberg inequality or
uncertainty principle.

3.6. Pseudo-Wigner-Ville Distribution

The Wigner-Ville Distribution [6, 7] can be thought of as a time-varying power spectral density
computed as the Fourier transform of a time-varying instantaneous estimate of an auto-correlation
function. The original Wigner-Ville Distribution has high time-frequency concentration. The
cross term oscillations of relatively high frequencies can be greatly reduced by using a low-pass

filter at the expense of autocomponent broadening. The pseudo-Wigner-Ville Distribution is
given by

PWVD (1, ®) = jx(t+%)x* (t—-:,;—)h('t) eI

where A(t) is a low-pass filter.
3.7. Choi and Williams Distribution

The Choi-Williams distribution preserves the signal energy marginals, and for some 51gnals offers
substantial cross-term suppression with little autocomponent broadening.

CWD (1, ) —” f4 exp (“") )x(u+ )& (=) T ar
Tt

4. DETECTION
Transient signals can be detected either in the time domain or in a transform domain. Under

wideband ambient noise conditions detection of a transient in the time domain may be inefficient
especially if the transient signal has significant components on discrete elements of the transform
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space, i. e. frequency, signal shape [8]. Consequently, we have concentrated our approach to
detection using STFT and DWT. A version of the Wolcin sequential detector was used which
produces a statistic consisting of the maximum likelihood signal power estimates in frequency and
time. The Wolcin detector also adaptively estimates and updates the noise power spectral density.

4.1. Generalized Likelihood Ratio (GLR) Detector

Consider the following detection problem:
Hy: x(t) = n(t)

Hj: x(t) = s(t) + n(1)
where x(2) is the received signal, s(¢) is the transient which is a time-localized signal waveform, n(t)
is a Gaussian noise of spectral density ~N(0, 1)

It can be shown that the above detection problem is equivalent to
HO.' X=n

Hy:x=s+n
where x, s, and n are the Fourier Transform or Wavelet Transform coefficients of x(¢), s(¢), and n(t)

respectively.

We now derive a detector based on the following generalized likelihood ratio (GLR) testing
statistic:

P(XIHI).

Agrrr®) =

PG
where x' ~N(p 02) and X ~N( 02)
Hy N (o 95 b, =N (g 07

The testing statistic is compared against a threshold G to determine if a signal is present:

(mip)? (=)

Accept H if <g
I
2 2
(=pg)”  (x-q))
Accept H; if 7 3 >g

(o}

0 %1
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More specifically, let  d, (8).d, (€) be the roots to the quadratic equation
2
ap(x)“=-bp(x) +c =0

= 2— = e 2— =
where a=o0[-0q , b 2(],1001 p.lczo) ,and ¢ uocz ul 0

Then d; (&),dz(é) are given by

2
woo%-ulog)ijmocf-ulcg) + (02-02) (u2o?-u2s2 - &)
2 2
917 %

The decision boundary for the Generalized Likelihood Ratio Detector can now be expressed as

Accept H; l Accept Hy Accept H

I I
dy(&) di(&)

The probability of detection (PD) and probability of false alarm (PFA) can now be analytically
expressed as

dy (&) =1 d, (&) —p
%1 %

dy(8) -1 di (&) -p
PFA = q,(ﬁ___‘!jﬂ_q,(l_____o)
°0 0
t x2
where @ is the error function defined by 1 )
D(1) = — J e
2

4.2. Wolcin Detector Framework
Let y(1) be a time series divided into K windows where each window is of length L. The input

signal at each window is a vector of L elements. The transform of the input vector is an output
vector of L. elements. At this point, we assume that successive windows do not overlap although
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our approach does not preclude this. Let f’k, (k=1,2,..,Kandl=1,2, ..., L") be the value of the

1" bin in the transform of the ¥ window on ¥(t). The bins can be either the frequency bins in the

case of Fourier Transform or the scale bins for Wavelet Transform.

The WolcinWolcin detector adaptively estimates and updates the noise power spectral density as
described below. The background noise power spectral density is initialized by estimating an
average over a set of K’ windows.

K
~ 1 ~
ZK',I"'fZYk,L

k=1

Atk=K +1, Zk—l,l = ZK',Z . After the background noise vector Zk—l,l is established at

the k7 (k > K’) window, one can normalize the subsequent windows of transform as

k-1,1
The noise power spectral estimates are adaptively updated as follows:
Zk,l= (l—a)Zk_1’1+aYk,l for Yk,121+S0
and Zk,l = Zk—l,l for Yk,l<1+S0

Here Sy is the hard threshold to determine whether a signal may be present at the /* bin. The

parameter ‘o’ is the ‘forgetting factor’. The effect of o is to make the background noise vector
adapt to the slow and subtle changes of the environment such as temperature gradient or light
intensity. The value of Sy is dependent on the requirement or acceptable performance. One can

choose a small value of Sy to increase the PD or a large value of S to reduce the PFA.

4.3. STFT Based Generalized Likelihood Ratio Detector

As described in Section 4.1, the detection problem can be formulated in terms of the Fourier
coefficients of the received signals. The detector in this case is given by

d(Y) = ;Zxk,l where

Xk,l=0 forkal<1+SO

Let N = KL/2 be the total number of time-frequency bins considered. (Recall X is the total number
of windows, L is the length of the window). If N is sufficiently large then we can use the Central

Limit Theorem to approximate d(Y) as a Gaussian random variable:
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d(Y) ~N (1 ,02) and  d(Y) ~N(].11, o%) where the parameters are given
below.

Hypothesis Hy: Noise only

uO=N}J. where = [ (x=1-/n(x))e"dx
1+5,
R, 12
O'0=N0' where o2 = J. (x—l—ln(x))ze—"fa'x—j.t2
_1+SO
Hypothesis H;: Signal and Noise
- X
1 1+Sp
1 (S S,) = f a5 G-l-in)e  FPdx
1+S0
P
By = (N=P)p+ Z 1 (Sp:S,)
p=1
-5} - x 12
1+§
_ 1 1L 2 I 2
(83 S,) = f o5 (-1=in(x)%e dx=p(Sg, 5 )
1+SO
P
o, = (N-P)o+ Zo(so,sp)
p=1

Here it is assumed the signal is present in P out of N Time-Frequency bins. Sp is the signal mean
power on the pth bin.

4.4. Wavelet Based Generalized Likelihoed Ratio Detector

Concatenate the time series Y} | into a vector j with L elements and use a sampled wavelet function
W at various scales and time shifts to represent y = Wad+ 9 where
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wiy (1)) wiq (2)

W= .. w_(1)

W (1) e g ()]

Wnm is the basic wavelet at scale n and time-shift index m. In the above representation, the time

series is expressed as linear combination of scaled and shifted versions of a wavelet. v is additive
gaussian noise. '

Apply a wavelet transform to y by multiplying it with another wavelet matrix R. R does not have
to be the same as W and it can incorporate a priori knowledge about the nature of transient signal
we are trying to detect. Also the dimensions of W and R can be different The rows of R need not

be orthogonal. The transformation results in: Ry = RWa + RV
The generalized likelihood ration (GLR) testing statistic in this case is

-1
x = YR RW (W'R°RW) W°R°Ry

or AcceptHy  if (x = j:PW] RS
AcceptH;  if (x = }“:PW] rY) 21
-1
where Py g = R°RW(WR'RW) WR°R

x is statistically distributed as a x2 random variable.

Under the Hg hypothesis x is a central x2 with 2NM degrees of freedom when the data are complex-

valued and of NM degrees of freedom when they are real-valued. The probability density function
of x under Hy, assuming 2NM degrees of freedom, is given by

Py (x) = 1 M exp (_—x)
(0]

Under Hy, the probability density function for x is:
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NM -1

1 x, 2 ~(x+S) JSxy
Pr(x) = =) exP(——z—)INM_lexp(—zj
20 20 o

where Iyyy.; is the zero™ order Bessel function and I'( ) is the gamma function and S is the signal
NM

power given by: § = Z ]silz where s; is the signal component from the projection of the signal
=1

on the i’ column of Pyz.

5. FEATURE EXTRACTION

The Wavelets program has the goal of performing comparative tests of wavelets based approaches
to a variety of classical time-frequency transform based techniques for signal detection and
identification. A prerequisite for this comparison is the generation of robust shift invariant features
for each of the techniques included in the comparative tests. The large dimensionality of
observation vectors, consisting of digital samples of an interval of received acoustic signal,
precludes using observation vectors as feature vectors because impractically large training sets and
excessive computation would be required. Reduction of dimensionality, achieved by mapping
observation vectors to smaller dimensional feature vectors, is required. Time-frequency (STFT,
Wigner-Ville), time-scale (Wavelet), and related Conjugate Quadrature Filter [9] transforms
promise to provide low-dimensional, and therefore computationally tractable, feature vectors
whose class densities are sufficiently distinct to classify transients.

Two related problems consist of (1) selecting optimal transforms (or combinations thereof) and (2)
defining optimal features as functions of the transformed signal. Each class density of the feature
vector should be compact, invariant with respect to translation of the observation vector, and
separated from other class densities. For instance, wavelet coefficients exhibit strong dependence
on the signal phase. However, energy/temporal-spread features based on computing the sum of
and the spread of squared wavelet coefficients within each band are nearly translational invariant.
Our studies using various transforms, including Wave Packets, M-band, and hierarchical versions
of the Daubechies wavelet, indicated they also provide nearly translational invariant features that
effectively separate transient classes.

Feature extraction is performed following transient detection and segmentation. Since
segmentation in the presence of noise is an error prone operation, one can expect differences in the
signal start and end positions of a detected transient from event to event. Ideally feature extraction
should show less variation due to sampling variation than to intraclass signal variation. Moment
features were selected on the expectation that they would be shift invariant. They can be calculated
for the original signal as well as for each decomposed band. The relative energy of each band to
the total signal energy of the original signal should also be shift invariant.
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5.1. Shift Invariant Band Moment Features

For typical classes of transient type signals, including classes of acoustic types, the gross signal
energy distribution in position and scale (constant-Q frequency) is similar within the class and
distinct between classes, whereas the point-to-point energies and the phase may vary as much
within a class as between classes. These facts suggest that low-order moments of the squared
moduli of a small number of wavelet subbands may provide low dimensional feature vectors for
classifying transient signals [10]. Wavelet-band feature vectors for a signal are obtained by
concatenating moments of each subband of a multistage DWT of the signal.

Moment based features are also extracted for the short-time Fourier transform. The moments of
each transform frequency bin are calculated. The STFT was calculated with the same number of
frequency bins as the number of scales used in the CWT transform.

In order to remove differences because of variation due to the signal amplitude and to mimic a
probability density function the signal was normalized

The d-th moment of band w), is defined by

_ d
md(wp) = % lwp(k)] k
where wp( k) is defined in Section 3.2.

Since typical classes of signals may contain significant variation in the positions of the transients
it is necessary to translate the transients s(k) to a standard position prior to computing the DWT in
order to obtain shift invariant wavelet-band feature vectors. This is accomplished by calculating
the central moments.

The set of moment features used for classification were the statistical functions of the moments:

the mean m;, the standard deviation (m;, )2, the skewness o3 and kurtosis oy.
o, = "3
3 372
(mz)
o, = 4
4
(my)*

5.2. Adaptive Energy Window Features

28




LMSC-P412291

The most obvious feature in a Fourier time frequency spectrograms are peaks associated with each
of the characteristic frequencies in the signal. Automatic techniques for exploiting spectral
features for signal classification have been developed. Potentially the most accurate technique
would locate the significant peaks and measure their widths and the energy associated with the
peak. Automatic peak extraction can be difficult if the peak is broad or several peaks occur within
a narrow frequency band.

The energy in local fixed size time-frequency regions can also be extracted with some loss in
generality. Two techniques can be used for fixed size time-frequency regions, One uses a priori
knowledge to pick the location of regions in the time-frequency domain. This works well if one
has a physical model of the signal sources expected or if one is restricted to a limited variety of
signals.

A more general approach uses adaptive region locations. Adaptive techniques place the fixed size
regions on the maximum energy areas in the time-frequency domain. Simple algorithms avoid
overlapping regions. For adaptive regions one obtains the energy in the region as well as the
relative time and frequency location of the window as features for classification. Both the fixed and
adaptive location techniques were exploited with time-frequency transforms on this program.

Wavelet transforms also exhibit peaks. Although wavelet transforms lack shift invariance, the
overall shape of the transform changes slowly with time shifts. This should be expected since
energy is conserved under a linear wavelet transform. Thus one can also extract shift invariant
features based on the energy and location of adaptive regions. This technique was used for both
discrete and continuous wavelet transforms.

Figure 12 compares the adaptive energy windows extracted for two examples in two different
transient signal classes for the Daubechies discrete wavelet transform. (The horizontal time axes
are at different scales depending on the segmentation process. One should compare the relative
location of the windows for each class.) The trained classifier selected the energy content and scale
of the first two windows as useful features but rejected the relative time.

6. CLASSIFICATION

Given a feature vector v, the maximum likelihood classifier [11, 12, 13]assigns the n-th class to v
so as to maximize the likelihood L(n|v) = P (v)P(n) where P(n) is the a priori probability that
the signal belongs to the n-th class, P, (v) is the class probability density, and n = 1, ..., N with
N = number of classes. The class probability densities can ben estimated either by a parametric
density estimation procedure or a nonparametric density estimation procedure, such as Parzen or
k-nearest neighbors. The high complexity of acoustic transient signals precludes the parametric
density estimation procedures. The results presented here were generated using an implementation
of Parzen windows known as Probabilistic Neural Networks (PNN) [14]. An enhanced PNN [15]
that includes clustering and adoption of the Parzen kernel was also used. The adaptive PNN selects
and uses the best features.

An alternative classifier known as Classification And Regression Tree (CART) [16] was also used.
It employs linear combinations of features and also ranks the features in terms of discrimination
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power.

7. COMPARATIVE TESTS
7.1. Detection Comparative Tests

We have completed the development and implementation of both the STFT based generalized
likelihood ratio detector and the DWT based generalized likelihood ratio detector. Both detectors
use Wolcin weighting of noise background. The STFT detector has been transferred to the MSF
Program where it is being used to analyze Sea Test data. Theoretical performance of both detec-
tors, in terms of probability of detection (PD) versus probability of false alarm (PFA) curves, has
been derived in close form as described in Section 4. Matlab and C codes of the performance
measures have been written for both detectors.

We have completed a comparative tests between the two detectors using synthetic signals. To
compare the performance of the detectors, both wideband and narrowband synthetic signals were
generated and Monte Carlo tests conducted where 10,000 detections were performed using input
signals with varying arrival time and noise. The PD versus PFA curves clearly indicated that the
DWT detector does better than the STFT detector when the transients are wideband. When the
signal is narrowband, however, STFT performs better than DWT. Here the signal is a single sinu-
soid.

We have also completed a comparative tests between the two detectors using generic signals. For
each of the four generic transient types, a set of 10,000 noise-added transients with varying arrival
time was generated to facilitate the detection comparative tests. More specifically, Gaussian noises
with differing sigma were generated and added to the pure generic transients which have varying
arrival time. The top figure of Figure 13 shows a representative impulsive transient (Type I) signal
with a certain arrival time and the bottom figure shows the same transient with noise added to it.
By viewing the bottom figure, one can not visually detect the arrival time of the transient. Figures
14-16 show the pure and noise-added transients for ringing, chirp and noise-like transients (Types
II, II, and IV) respectively. Again, the arrival time in each case is not visually detectable in the
time domain.

Both the STFT and the DWT detectors were applied to the four data sets. For each type and for
each detector, the probabilities of detection (PD) and the probabilities of false alarm (PFA) were
computed from the 10,000 detections. The PD versus PFA curves were plotted for each type and
each detector and the curves are given in Figures 17 to 20. As can be seen in these figures, the
STFT detector consistently performs much better than the DWT detector for all four generic
types. For ringing (Type II) and chirp transients (Type III) in particular, the STFT detector is
nearly perfect in detecting the arrival time of the transient with its PDs extremely close to 1 and its
PFAs extremely close to 0.

7.2. Identification Comparative Tests
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Type | Tranaient
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Figure 13. An impulsive transient signal (top) with noise added to it (bottom)
Type Il Translent
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Figure 14. A ringing transient signal (top) with noise added to it (bottom)
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Type H! Transient
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Figure 15. A chirp transient signal (top) with noise added to it (bottom)
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Figure 16. A noise-like transient signal (top) with noise added to it (bottom)
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Figure 17. The PD vs. PFA curves for STFT and DWT detectors
Type I: Impulsive Transients
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Figure 18. The PD vs. PFA curves for STFT and DWT detectors
Type II: Ringing Transients
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Figure 19. The PD vs. PFA curves for STFT and DWT detectors
Type II: Chirp Transients
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Figure 20. The PD vs. PFA curves for STFT and DWT detectors
Type IV: Noise-like Transients
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Identification comparative tests were performed using the different combinations of features and
transforms shown in Table 8.

Transform Features
Discrete Wavelet Transform Moments
Adaptive Energy Windows
Continuous Wavelet Transform Adaptive Energy Windows
Short Time Fourier Transform Adaptive Energy Windows
Wigner-Ville Distribution Adaptive Energy Windows
Constrained Total Least Squares Frequency, Amplitude & Decay
Coefficient for Poles

Table 8. Transforms and Features Used in Comparative Tests

7.2.1. Analysis of Homebrew Transient Test Set

We have completed the identification comparative test using the various candidate features and
transforms on our homebrew transient set generated in the office. There were six classes of
transients with 36 examples in each class. Classifier training was performed using 24 samples
from each class and testing was performed on the remaining 12 samples. Table 9 shows the
confusion matrix from CART using the DWT band moments. The confusion matrix is useful in

DRAWER | BRICK CLANK DOOR SQUEAK | TABLE
DRAWER 12 2 0 2 1 0
BRICK 0 8 0 0 1 1
CLANK 0 1 12 0 0 0
DOOR 0 0 10 0 0
SQUEAK 0 0 10 0
TABLE 0 1 0 11

Table 9. Confusion matrix for DWT wavelet momént band features.

examining false classifications. If the main error is between two related classes (i.e., brick and table
are both excitations of the same system) then one is less concerned than if one has the same amount
of error between unrelated classes. The misclassification of the nearly pure tone squeak with the
broadband drawer and table is of concern [17].

Classification results based on wavelet band moment features were slightly better than adaptive
energy window features derived using the STFT. These STFT features were obtained by
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calculating the energy within three fixed size windows in time-frequency space. The STFT
features used were the energy within each window and the location (relative time, frequency) of
the center of the window. The classification results are shown in Table 10.

DWT CWT STFT WVD
MOMENTS | ENERGY | ENERGY | ENERGY
PNN 88 67 74 67
ADAPTIVE PNN 92 93
CART 92 60 85 64

Table 10. Percent correct classification resuits.

The classification results for the continuous wavelet transform indicated that adaptive energy
windows in time-scale space do not provide effective features. Additional research will be
performed on feature selection using the continuous wavelet transform. Similarly the Wigner-
Ville distribution performed poorly using adaptive energy windows. The choice of window size
for both of these transforms should be examined since one would expect at least comparable
performance to the STFT and discrete wavelet transform.

Relative feature rankings from CART (Table 11) and the adaptive PNN classifier indicate that the
lower moments (mean and variance) of the subbands were more powerful discriminants than the
higher order moments (skewness and kurtosis). The poorer performance of the high order
moments is typical since they are more sensitive to noise processes.

RANKING | RELATIVEIMPORTANCE | SUBBAND | FEATURE
1 100 3 (my) 2
2 99 4 (my) /2
3 95 1 my
4 -89 2 m;

5 88 3 m,
6 76 2 (my)'/2
7 71 4 m,
8 68 2 aq
9 62 3 a4
10 57 1 (my) 12
11 56 2 a3

Table 11. Ranking of band moment features by CART
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12 55 3 a3
13 54 1 g
14 45 1 8y
15 42 4 a3
16 41 4 a4

Table 11. Ranking of band moment features by CART

7.2.2. Analysis of Navy Biologics Data Set

An introductory Navy biologics data set was acquired (originally from Woods Hole). These
signals were processed to extract features and classification results were obtained. Moment
features extracted from the discrete wavelet transform were used to obtain a 75% correct
classification rate using the first four classes in Table 2. Twenty examples of each class were
reserved for testing and the rest were used for training. The confusion matrix is shown in Table 12.
Misclassification of the porpoise and dolphins as whales seems to be the main error source. These
signals have a considerable noise background.

Sperm Whale Other Whale Porpoise Dolphin
Sperm Whale Cry 17 0 0 3
Other Whale 0 16 4 3
Porpoise 0 2 14 1
Dolphin 3 2 2 13

Table 12. Confusion matrix for biological data

The continuous wavelet transform with a one sided Gabor wavelet was also used for this data set.
The adaptive energy window features were extracted for a 43% correct classification.

Comparison was made between the continuous wavelet transform (CWT) and the short-time
Fourier transform (STFT) in classifying the first three classes of this biologics data set. The CWT
scales and STFT frequency bins were chosen using three techniques. These are an adaptive
technique which centers 10 logithmically spaced scales on the peak of the energy distribution, a
technique which matches the scales to the cumulative energy distribution and one which uses 11
fixed logirithmically spaced scales. The classification results in terms of misses are summarized
Table 13 below [18].

If we just focus on the results using CART with linear combination splits, the two CWT techniques

using adaptive scales clearly outperform the CWT with fixed log scales. These adaptive CWT
techniques also outperform all of the STFT techniques which produced comparable results.
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Transtorm: CWT

Scale: Adaptive Energy Window with Adaptive Wavelets

CART Single Var Split: 1/60

CART Linear Var Split: 1/60

PNN: 5/60
Scale: Cumulative Energy

CART Single Var Split: 10/60

CART Linear Var Split: 1/60

PNN: 8/60
Scale: Fixed Log Scale

CART Single Var Split: 5/60

CART Linear Var Split: 8/60

PNN: 1/60

Transform: STFT

Scale: Adaptive Energy Window with Adaptive Wavelets

CART Single Var Split: 5/60

CART: Linear Variable Split: 5/60

PNN: 5/60
Scale: Cumulative Energy

CART Single Var Split: 5/60

CART Linear Var Split: 6/60

PNN: 4/60
Scale: Fixed Log Scale

CART Single Var Split: 5/60

CART Linear Var Split: 6/60

PNN: 4/60

Table 13. Classification results of CWT and STFT based methods
on Navy biologics data

7.2.3. Analysis of NUWC Classified Transient Databases

We have processed the Navy Transient Database using the Continuous Wavelet transform and the
Short-Time Fourier transform both with moment features. These results include three signal
classes from the dataset. (The actual class designations are secret or at least sensitive information.
The classes were selected because of their frequency of occurrence and relevance to the passive
transient detection problem.) The classifier was trained on over 40 events per class and tested on
20 events per class. The CWT and STFT classifiers both performed very well considering the
differences between various elements within each class. The confusion matrices are shown in
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Table 14. The classes are made up of signals from different environments and a range of signal-

Continuous Wavelet Transform with Moment Features
CART: Linear Variable Split

Misses: 5/60
True Class
A B C
A20 0 O
Labeled Class B 0 19 4
C 0 1 16

Short-time Fourier Transform with Moment Features
CART: Linear Variable Split

Misses: 4/60
True Class
A B C
A20 0 O
Labeled Class B 0 18 2
C 0 2 18

Table 14. Confusion matrices for NUWC classified transient databases

to-noise ratios. However, the SNR is generally high and the between class differences are large
enough that these signals do not provide a rigorous comparison of the techniques. As was found
in the synthetic signal case, both the CWT and STFT performed comparably at high SNR. We
need to add additional noise to these signals to judge the relative performance of the CWT and the
STFT.

7.2.4. Analysis of Synthetic Generic Transient Databases

We have conducted both the Comparative Tests of "Between-Class" Identification and the
Comparative Tests of "Within-Class" Identification of generic transients using the Wave Packet
(WP) [19, 20] based classifier, the Continuous Wavelet Transform (CWT) based classifier, and the
STFT based classifier. The following sections detail the results obtained.

7.2.4.1. "Between-Class" Identification Comparative Tests

We have completed the "between-class” identification comparative tests of the WP approach
against the CWT based classifier using Morlet Wavelets and the STFT based classifier. These tests
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were conducted using a data set consisting of four types of generic transients described in Table 3
and they were performed as a function of signal to noise ratio (SNR). The SNRs we investigated
ranged from 50dB to -50dB.

For each of the four types of generic transients, 200 signals were generated using the parameters
shown in Table 3. Out of the 200 signals, 180 were randomly selected from each type and used as
training samples to train the classifiers. The remaining 20 signals per class (80 signals total) were
used as test signals. We have completed the "between-class" identification comparative tests of
the WP approach against the CWT based classifier and the STFT based classifier. The number of
misses given by each classification scheme as a function of SNR are shown in Table 15. Figure
21 shows the number of misses given by the three approaches plotted against SNR. The results
indicated that when the SNR is positive, all three approaches perform extremely well with the WP
performing consistently better than the CWT and STFT. When the SNR is negative, the STFT
outperforms the other two. In cases where the SNR is worse than -14 dB, all three approaches
showed an error of more than 50%.

7.2.4.2. "Within-Class" Identification Comparative Tests

An extended generic transient data set has been generated using Tables 4 to 7 to permit these
"within-class" identification tests. For each of the four classes of generic transients, subclasses
were generated and used in these tests. They are also being performed as a function of signal to
noise ratio (SNR). The SNRs we investigated again ranged from 50dB to -50dB.

To perform the "within-class” identification test for impulsive transients (Type I), 200 signals
were generated for each of the four subclasses using the parameters shown in Table 4. Out of the
200 signals, 180 were randomly selected from each subclass and used as training samples to train
the classifiers. The remaining 20 signals per subclass (80 signals total) were used as test signals.
Table 16. shows the number of misses given by each classification scheme as a function of SNR.
Figure 22 shows the number of misses given by the three approaches plotted against SNR. The
results indicated that the STFT outperforms the other two approaches in classifying the subclasses
within the impulsive transient class. When the SNR is negative, all three approaches showed a
"within-class" classification error of more than 50%.

Similarly, 200 signals were generated for each of the four subclasses of ringing transients (Type
IT) using Table 5. 180 were randomly selected from each subclass and used as training samples to
train the classifiers. The remaining 20 signals per subclass (80 signals total) were used as test sig-
nals. Table 17. shows the number of misses given by each classification scheme as a function of
SNR. Figure 23 shows the number of misses given by the three approaches plotted against SNR.
As can be seen, the CWT in general outperforms the STFT and WP based classification schemes
in identifying the subclasses within the ringing transient class. When the SNR is worse than -
15dB, all three approaches showed a "within-class” classification error of more than 50%.

Similar study was made to the four subclasses of chirp transients (Type III). Table 18. shows the
number of misses given by each classification scheme as a function of SNR. Figure 24 shows the
number of misses given by the three approaches plotted against SNR. The CWT in general out-
performs the STFT and WP based classification schemes in identifying the subclasses within the

41




Number of Misses

LMSC-P412291

Number of Misses
SNR (dB) CWT STFT WP
50 0/80 1/80 0/80
10 2/80 1/80 0/80
8 4/80 2/80 0/80
6 2/80 1/80 0/80
4 1/80 0/80 0/80
2 4/80 1/80 1/80
0 4/80 4/80 3/80
-2 6/80 1/80 2/80
-4 6/80 3/80 4/80
-6 9/80 4/80 8/80
-8 15/80 11/80 25/80
-10 24/80 16/80 19/80
-12 29/80 .25/80 47/80
-14 46/80 41/80 51/80
-16 60/80 55/80 57/80
-18 64/80 59/80 63/80
-20 56/80 57/80 61/80
-50 60/80 61/80 57/80

Table 15. "Between-Class" Identification Results
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Figure 21. "Between-Class” Identification Results
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Number of Misses

SNR (dB) CWT STFT WP

50 1/80 1/80 0/80

25 10/80 4/80 5/80

20 9/80 2/80 8/80

15 21/80 6/80 15/80
10 31/80 13/80 20/80
8 38/80 9/80 34/80
6 34/80 34/80 22/80
4 49/80 27/80 39/80
2 43/80 36/80 37/80
0 53/80 40/80 38/80
-2 53/80 42/80 48/80
4 52/80 49/80 47/80
-6 60/80 52/80 58/80
-8 62/80 58/80 60/80
-50 58/80 66/80 60/80

Table 16. "Within-Class" Identification Results for Impulsive Transients (Type I)
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Figure 22. "Within-Class" Identification Results for Impulsive Transients (Type I)
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Number of Misses

SNR (dB) CWT STFT WP

50 2/80 0/80 0/80

10 4/80 4/80 9/80

8 2/80 5/80 14/80
6 7/80 6/80 15/80
4 4/80 7/80 15/80
2 6/80 11/80 12/80
0 12/80 14/80 20/80
-2 15/80 19/80 34/80
-4 11/80 18/80 36/80
-6 23/80 36/80 35/80
-8 24/80 39/80 52/80
-10 36/80 50/80 44/80
-15 47/80 57/80 60/80
-25 60/80 60/80 58/80
-50 63/80 67/80 66/80

Table 17. "Within-Class" Identification Results for Ringing Transients (Type II)

“within—Class” |dentification Comparative Test Results for Typell Signals
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Figure 23. "Within-Class" Identification Results for Ringing Transients (Type II)
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Number of Misses
SNR (dB) CWT STFT WP
50 0/80 0/80 3/80
25 0/80 0/80 3/80
20 0/80 3/80 7/80
15 0/80 12/80 6/80
10 1/80 13/80 6/80
8 8/80 23/80 16/80
6 8/80 23/80 16/80
4 10/80 33/80 ' 18/80
2 21/80 35/80 19/80
0 27/80 54/80 16/80
-2 23/80 52/80 27/80
4 31/80 58/80 24/80
-6 39/80 60/80 39/80
-8 40/80 58/80 41/80
-10 44/80 54/80 55/80
-50 60/80 60/80 57/80

Table 18. "Within-Class" Identification Results for Chirp Transients (Type III)

"Within—Class" Identification Comparative Test Results for Typelll Signals
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Figure 24. "Within-Class" Identification Results for Chirp Transients (Type III)
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chirp transient class. When the SNR is worse than -8dB, all three apprbaches showed a "within-
class” classification error of more than 50%.

8. TECHNOLOGY TRANSFER
8.1. Transfer of Detection and Classification Algorithms to the Multisensor Fusion System

The MSF program is connecting a set of sensor signal processing modules together to provide for
increased performance over a single sensor module. Modules include passive narrowband, passive
transient, electric field, magnetic field and active sonar processing. The Wavelets program is
providing the transient signal processing module as shown in the Figure 25 below. In addition to
the software modules shown, data from the MSF Sea Tests is being analyzed. A catalog of several
hundred transients has been generated with signals separated by class. These signals were used to
train the classifier for the December 22, 1993 demonstration to the ARPA customer.

8.2. Transfer of Wavelets Quicklook Tool to the Multisensor Fusion System

An interactive Wavelets Quicklook Tool has been developed which allows the user to conveniently
view and segment the signals for further analysis. This tool has been used extensively in this
Contract and has also been transferred to the MSF Program for their use. This tool permits random
access of data in huge databases. Various transforms and displays are possible in addition to
listening to selected signal segments. This capability allows the extraction of signals of interest and
classifying them based on both sound and transform characteristics. Screening and processing of
MSF Sea Test data would not have been possible without the wavelet quicklook tool. A snapshot
of this tool is given in Figure 26. Some its features include:

1) Interactive graphic display of the signal. User selects a section of the signal using point and
click.

2) Separate interactive graphic display of selected portion of the signal. User can scroll the selected
segment in either direction in real time.

3) User can perform FFT or STFT on selected segment and view the results as either a 2D, mesh
or image type plot.

4) User can listen to selected segment.

5) Signal section information can be saved to a log file for later retrieval by either this tool or the
classifier.

6) New signals are graphically selected from a menu of choices.

7) All features are menu selectable.

9. RELATED ACTIVITIES
9.1. Parallel Implementation of Continuous Wavelet Transform

A fast continuous wavelet transform was developed using concepts similar to those detailed in
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[14]. Under a Lockheed Independent Research project on parallel computation this algorithm was
implemented on a Wavetracer Zephyr SIMD computer. This machine has 8192 processor
elements. Each 9 MHz processor has 256 bytes of internal memory. Timing benchmarks of the
Wavetracer results were compared to a Sparc 2 The Sparc 2 performs at 26000 kWhetstones.
(Whetstones measure single precision floating point processing power. An 8 MHz 8088/8087 IBM
PC performs at 140 kWhetstones. The Sparc 2 is approximately 100 times as powerful as the basic
Wavetracer processing element.) Table 19 shows the effective speed up obtained using the
Wavetracer.

Signal Size Sparc 2 Wavetracer Speed-up factor
256 4.53 1.42 3.19
512 9.12 2.69 3.39
1024 21.95 491 447
2048 4490 9.49 4.73

Table 19. Timing Benchmarks

9. 2. Classification of Active Sonar Signals

Classification of Active Sonar Signals is being performed under an Independent Research project
in the Lockheed Research & Development Division. Comparative tests were performed between a
discrete wavelet transform (furnished by the Wavelet Program) approach and the short-time
Fourier transform. Features were extracted using fixed position energy windows. The energy
windows were fixed in position because the characteristics of the transmitted active signal is
known and the windows can be positioned to serve as “matched filters” for the expected returns.
Significantly better results were obtained using the wavelet transform.
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